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Figure 1. Botential leverages the entire human body as an interactive surface, while enabling the identification of tap gesture 
locations on different body parts and a hovering through the clothes. It is conceivable to integrate this technology with various 

wearable objects, such as a) Necklace b) Bracelet c) Ring d) Belt and e) Legband.

input device for human-computer interaction, which is 
defined as On-Body Interaction [18]. While mobile devices 
usually have a very limited interaction space, using our 
body as an interactive surface has the advantages of being 
more accessible, offering a relatively larger input footprint 
(up to two m2 of interaction space [5, 29]), and the ability to 
support eyes-free interaction based on proprioception [23], 
i.e. the sense of our own body’s configuration in space.
Researchers have proposed a number of approaches to
sense on-body inputs from a distance, such as using optical
tracking [14,17], or by having the sensing device in direct
contact or connection with the body parts, as in Skinput
[19] or Touché [33]. Each of the above approaches has its
own advantages but also some constraints. For example,
optical tracking is affected by lighting conditions, and
acoustic sensing has difficulties in detecting soft and thus
silent touches. Capacitive sensing has been used to detect
different types of touch events, but not to reliably
distinguish the different parts of our body.

In this paper, we propose Botential (Body Potential), a 
novel interaction technique that senses electrical 
capacitances and potentials of different body areas when 
being in touch with the input device. This alternative way 
of sensing can complement previous approaches and 
improve mobile interaction. Instead of using the human 
body as an interrupter [3] or receptor [8], we treat it as an 
emitter and enable for the following benefits: 

 Identifying the location of taps on the entire body 
without driving an electrical current through the body. 

 The ability to sense soft and long touches and an 
increased sensing range per sensor unit. 

 Supporting a number of techniques for eyes- and 
hands-free interaction to allow different tapping and 
hovering gestures even through clothes. 
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ABSTRACT 
We present Botential, an on-body interaction method for a 
wearable input device that can identify the location of on-
body tapping gestures, using the entire human body as an 
interactive surface to expand the usually limited interaction 
space in the context of mobility. When the sensor is being 
touched, Botential identifies a body part’s unique electric 
signature, which depends on its physiological and 
anatomical compositions. This input method exhibits a 
number of advantages over previous approaches, which 
include: 1) utilizing the existing signal the human body 
already emits, to accomplish input with various body parts, 
2) the ability to also sense soft and long touches, 3) an
increased sensing range that covers the whole body, and 4)
the ability to detect taps and hovering through clothes.

Author Keywords 
Embodied Interaction; On-Body Interaction; User Interface; 
Hands-free; Eyes-free; EMG; Capacitive Sensing. 

ACM Classification Keywords 
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
User Interfaces — Input devices and strategies. 

INTRODUCTION 
A number of previous research [17,19,24] have 
demonstrated the advantages of leveraging our own body as 
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In the following sections we explain the theoretical 
background of the electrical properties of human cells, 
methods of measurement, and our developed prototype. To 
gain insights, on how such system performs in terms of 
accuracy, we furthermore conducted an evaluation with 10 
users. Besides the technical contribution, we envision an 
interaction concept, conduct a field study, and discuss how 
this concept could possibly be applied and embedded into 
wearable devices to enable eyes- & hands-free interaction. 

BOTENTIAL 
Botential leverages a unique electrical signature, measured 
on the bare skin, to provide concrete information on which 
part of the human body is being touched with the sensor. 

As a proof of concept, Botential is realized using a simple 
off-the-shelf EMG prototype sensor to measure tiny voltage 
on the skin caused by the negative potential of cells, which 
slightly varies across body parts. Due to the prototypical 
nature of this sensor, we additionally require the support of 
a capacitive sensor (CS). Frequency based capacitive 
sensing provide additional information on the virtual 
capacitance of the skin and the underlying tissues. 
Nevertheless, with a high quality clinical EMG device there 
would not be the need for capacitive sensing, as both the 
resolution and reliability of the system can be significantly 
enhanced. 

 
Figure 2. Illustrating the measured signal spectrum at specific 

areas. The red/blue lines in the graph represent the signal 
measured from the red/blue areas. 

Background and Theory 
In contrast to nonliving objects, in living animal and plant 
cells we can commonly find electric potentials caused by an 
imbalance of ions between the two sides of a cell membrane 
[21]. Literature defines two types of electric potentials that 
can be detected in our body: the relatively static membrane 
potential called the resting potential (or resting voltage), 
and the specific dynamic electrochemical phenomena called 
action potential, which occurs in excitable cells, such as 
neurons, muscles, and some secretory cells in glands [12]. 
While action potential occurs when tensing a muscle, the 
resting potential is always present and can be also found in 
any other tissue. Furthermore, it has 2 important properties: 

1. Resting potential is different at each part of our body. 
For example, the resting membrane potential for 
skeletal muscle cells is approximately -95 mV and for 
smooth muscle cells is -60 mV; our neurons have a 
resting potential of -60 to -70 mV [21]. The differences 
in the body's anatomical and physiological structure 
result in unique resting potentials in almost every part 
of our body, as illustrated in Figure 2.  

2. The magnitude of resting potential is relatively stable 
over time and against stimulation, since it is 
determined by the cells' static properties [21].  
When an excitable cell is activated, e.g. when 
contracting a muscle, it quickly accumulates a positive 
action potential. It can increase up to 100 mV, and then 
discharges in a few milliseconds. This is followed by a 
very low fluctuation (~1 mV [36]) of the resting 
potential. 

Sensing Methods 
Electromyography (EMG) is a common way to measure 
such electrical potentials. There are two fundamental 
measurement techniques: the invasive setup with needle 
electrodes and the non-invasive setup that directly places 
the sensors in contact with the bare skin. Particularly when 
measuring in a non-invasive way on the surface of the skin, 
the measured signal could contain strong noise accumulated 
during the propagation of the actual signal through different 
tissues in the body. The noise received by the EMG sensor 
can be typically caused by Causative Factors, Intermediate 
Factors and Deterministic Factors [26]. For us the 
causative factors are more relevant, because they directly 
affect the signal, and can be further divided into Extrinsic 
Factors (e.g. type of contact to the skin, such as through 
tiny hair/dirt, or the shape, surface, orientation of the 
electrodes, etc.) and Intrinsic Factors (e.g. anatomical, 
physiological, and biomechanical factors such as 
Microvibrations [31] or properties of muscle fibers in terms 
of thickness, type, temperature, etc.) [11].  

As mentioned, most of the human body’s cells have an 
excess of electrons and thus a negative electrical potential / 
charge to the outside. The ability to store this electrical 
power can be described as a capacitance or as body 
capacitance when referring to the overall capacitance of the 
human body. The capacitances vary between 50 – 150 pF 
depending on the individual body parts [34]. This 
capacitance can also be measured invasive or on the skin at 
different body parts, which is called Capacitive Sensing 
(CS). In general, we distinguish between three sensor setups 
for capacitive sensing: Transmit Mode, Loading Mode and 
Shunt Mode [35], which differ in physical arrangement, 
number of electrodes, and their function allocation.  

Determining action potential of a muscle, usually requires 
at least two measuring electrodes (e.g. EMGmid and EMGend), 
attached to two different spots over a certain muscle or 
muscle group. Furthermore a reference electrode (e.g. 
EMGref) is required to be attached to a different spot, which 
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should not be affected by any muscle activity. As part of the 
measurement principle, the sensor always detects the 
potential difference between the reference electrode and the 
measuring electrode. The resulting difference between the 
gathered signals of two measuring electrodes indicates the 
action potential. This can be used to accomplish a gesture 
control, such as proposed by Saponas et al. [32] who use 
the sensor on a fixed muscle group to detect action potential 
at certain areas around the arm and to thus interpret finger 
gestures.  

Previous research for muscle-computer interaction typically 
uses EMG to detect action potentials of muscle cells. This 
technology can also be used to measure resting potential in 
almost all types of cells, including locations with few 
muscle cells (e.g. belly). However, pure resting potential of 
individual body tissue is very difficult to measure without 
using specialized tools (i.e. Potentiometric Probes [13]) that 
are intrusive. What can be realistically measured in an 
interaction setting is a combination of the overall resting 
potential for all body tissues in a non-intrusive way on the 
skin at a particular location, plus some noise. While noise is 
usually undesirable, colored noise also can provide 
important information that helps localization, if it is 
somehow significant across body parts’ surfaces. 

Electrode Arrangement 
Compared to the common sensing approaches, we can also 
re-orient the measuring electrode (facing the air) and make 
it touchable by any body part. In this arrangement only the 
reference electrode is still needed to be permanently in 
contact with the body. Regarding the measuring electrodes, 
we actually only require one, or arrange both closely next to 
each other (See Figure 3). This way we achieve a contact 
area, which collects the unique electrical signature of the 
body part that is touching it. 

 
Figure 3. The Botential setup: the measuring electrodes are re-

orientated and act as a touch point. 

 

IMPLEMENTATION 
In order to demonstrate the feasibility of our proposed 
concept, we built a proof-of-concept wearable input device 
(Figure 4), which we envision to be integrated into 
everyday wearable accessories as illustrated in Figure 1. 

Prototype 
The prototype basically consists of four components: a 
portable EMG sensor module (Muscle (EMG) Sensor v2 
from Advancer Technologies1), a voltage divider circuit 
(consisting of a 22pF capacitor and a 10MΩ resistor) with a 
stable multivibrator to enable for a Capacitive Sensing in 
loading mode, a microcontroller (an Arduino Pro Mini) to 
pre-process and transform the signal, and a Bluetooth 
modem (HC-06) to enable wireless communication with a 
computer, where the data is displayed, processed, and 
classified. Two conventional 9V batteries and a 3.7V LiPo 
battery power the prototype. The hardware is mounted on a 
Velcro tape and thus allows the user to wear the device as a 
leg, wrist or armband.  

 
Figure 4. Botential mounted on a band: the EMG mid / end 
and the CS electrode are surrounded by copper pads which 
are hidden under black isolation tape and enable hovering.  

The EMG sensor module has three electrodes, from which 
the reference electrode (REF, size: 20 x 20 mm - mounted 
on the inside of the band) is always in contact with the skin 
(e.g. with the exterior side of the hand when worn as a 
wristband). The other two electrodes (size: 10 x 4 mm each 
with a distance of 1 mm), which are labeled as MID and 
END, are integrated on the outside part of the band, to 
allow for proper contact with a desired body part.  

To gain additional information on which body part is being 
touched, we put another electrode next to the MID EMG 
electrode to enable capacitive sensing. These electrodes 
represent the actual contact area that can be touched with a 
desired body part. Around the contact area, large copper 
pads (size: 20 x 35mm + 20 x 70 mm) are embedded to 
enable the sensing of an approaching body part and 
touching through clothes. 

Signal 
While a professional needle EMG would be able to provide 
a frequency-based signal, containing a summation of resting 
potentials, we are unable to measure such clear signal on 
the surface of the skin. Instead, we measure a noisy signal, 
which is a superposition of resting potentials from different 
                                                             
1  http://www.advancertechnologies.com/p/muscle-sensor-
v3.html [last accessed 26/01/2015] 
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fibers plus different noise caused by Extrinsic Factors, 
which we include as a feature in our electrical signature. 
These factors are crucial, since the characteristic of the 
surface that touches the sensor instrumentally determines 
the measured signal and thus the detected body part. 

In contrast to a clinical EMG sensor, the EMG sensor used 
in our prototype has limited capabilities due to the hardware 
components, which already rectify, smooth and normalize 
the gathered signal. This loss in information only enables to 
behold the amplitude and not the whole frequency spectrum 
of the actual signal. To compensate that we also use a 
capacitive sensing in loading mode to enrich the electrical 
signature with further frequency information and thus 
extend the set of features. Signals from both EMG and 
capacitive sensors are then merged together (see Figure 5). 
After this early sensor fusion, we broadcast the computed 
signal via a serial Bluetooth connection to a computer, 
where a Fast Fourier Transformation (FFT) is applied on 
the fused signal. 

 
Figure 5. The gathered raw data of the EMG & CS are being 
fused and afterwards treaded with an FFT. Features used for 

touch recognition are extracted from the FFT. 

Furthermore, the capacitive sensing (with the integrated 
copper plates in the armband), also enables a precise 
detection of a hovering state within the distance of 4 cm, 
which is achieved by sending electric pulses to the copper 
plates and measuring the time of charging and discharging. 

Recognition 
Before we can recognize the body part that is being touched 
with the sensor, we need to first conduct a Training Phase, 
in which the user is required to record samples of each body 
part. After completing such process, we can enter the 
Recognition Phase, in which body parts can be detected 
based on the known electrical signatures gathered in the 
previous training phase. The recognition can be performed 
Online in real-time, which requires a classification to 
perform quickly with sufficient high recognition rates, since 
computational resources are limited. Alternatively, we can 

process the gathered data Offline, which has the advantages 
of being independent from just-in-time decisions and 
limited computational or time resources. For evaluation we 
followed this approach to post process and analyze the data. 

Online 
During the Training Phase, the user needs to use the sensor 
to touch the desired body parts. Then, the EMG sensor data 
and the capacitive sensing data are recorded over duration 
of about 2.5 seconds with a sampling rate of 100 Hz, to 
create an FFT with [0,127] channels out of one instance 
with a window size of 256 values. During the Prediction 
Phase, the live data stream is constantly compared with 
saved patterns from the training phase while applying a 
“Fast Correlation-Based Feature”-like algorithm [15] to 
find similarities. While tapping can always be detected 
immediately, the identification of a body part takes ~500ms 
but can last up to ~2.5s in this setup. Nevertheless, there is a 
trade-off between speed and accuracy in recognition.  

Offline 
Based on the experience of our previous test, in the 
Training Phase we now reduced the window size down to 
64 values to create a quicker FFT with [0,31] channels. We 
recorded each training set (which is a position on a body 
part) with a sampling rate of 60 Hz over duration of about 
11 seconds, to separate 10 instances. Broader window sizes, 
more instances or higher sampling rates did not provide 
better results. To not lose information, we waived on 
applying any filters and then defined 6 features, which 
provided high separation sharpness on the raw data: 

 Signal Energy 

𝑃𝑃 =
1
𝑁𝑁

|  𝑥𝑥 𝑓𝑓 |  

 Number of Mean-Crossings 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

𝑇𝑇 − 1
∥ {𝐴𝐴 − 𝐴𝐴 } 

 Summed Second highest Amplitude 

2𝑛𝑛𝑛𝑛𝑛𝑛 = |  𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴 | 

 Summed Third highest Amplitude 

3𝑟𝑟𝑟𝑟𝑟𝑟 = |  𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴 | 

 Summed Delta of highest Frequency in Noise Area 

∆𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = |  𝜕𝜕   ( )(𝑓𝑓)| 

 Signal-to-Noise Ratio 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃
𝑃𝑃

 

The recognition is detailed in the following section. 
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EVALUATION  
To discover the system’s capabilities, we sequentially 
conducted several tests in which we investigated the cross-
user compatibility of the system (T1), the distinguishability 
between 8 different body parts (T2), the resolution of each 
body part in a range of 1.5, 3, 5, 7, 9 cm (T3) and the recall 
accuracy overtime (T4). 

Participants 
We recruited 10 participants (1 female) with an age of 24-
33 (M=27.2). Their height was 1.72-1.98m. All participants 
were within +/- 10% of their body-mass index and thus 
optimal for our evaluation to ensure a possibly higher 
comparability. Among all participants, one participant 
rejected measurements to be performed on her thigh. T4 
was performed with only one participant. 

Procedure and Task 
For the evaluation, we first marked the recording areas on 
the user’s body parts, as shown in Figure 6. Then, we 
mounted the contact electrodes on a separate Velcro tape, 
which was long enough to be fixed tightly to the user’s 
body, to avoid potential irregularities due to the shifting of 
the sensor. The user was instructed to sit still and not 
tensing any muscles. Even if some spots are different for 
each user, such as the finger already ends at 70mm, we 
decided to still measure the 90mm spot – in this case, on the 
hand palm. For each user we recorded the raw data in a 
CSV file and concurrently generated an ARF feature file. 

       

       
Figure 6. Tested areas: (1) calf, (2) finger, (3) upper arm, (4) 
palm, (5) back of the hand, (6) forearm, (7) thigh & (8) belly. 

Classification 
To determine a classifier we analyzed the feature files with 
the Weka data mining tool v3.7.11 [16]. For each user we 
compared all 8 body parts against each other with 5 state-
of-the-art classifiers, which we found suitable (see Figure 
7). To understand the classifiers theoretical performance 
level, we applied a 10-fold cross validation, but which did 
not yield any statistical differences as shown by an 
ANOVA for correlated samples (F4,36 = 1; p=.42). To 
achieve a more realistic impression on the recall rate, we 
furthermore applied a leave-one-out method, but which did 
not show any differences either (F4,36 = 1.29; p=.29). Also 
the Weka’s percentage split of 66% did not yield any 
significant differences (F4,36 = 2.21; p=.09). Based on the 
performances we chose the Bayes Net because of its 
slightly lower standard deviation & comparably high mean. 

 
Figure 7. Classifier performance of Naïve Bayes (NB), Bayes 

Net (BN), Decision Table (DT), REP Tree (REP) and Random 
Forrest (RF). Error bars are .95 confidence intervals 

T1: Cross-User Compatibility 
Different users demonstrate different physiological 
properties, including thick / thin / dry / oily skin, more / less 
evolved muscles or fat and water sedimentations. Our data 
also confirmed that it is not possible to train a generic 
classifier that works for all users. A leave-kUser-out (k=5) 
cross validation with a Bayes Net classifier results in an 
overall recall rate of 16.1%, due to massive confusions. 
Therefore, it seems very unlikely that data from one user 
could be used for another user. It suggests that the system 
indeed needs to be trained using personal data for each user. 

T2: Identification of Body Parts 
To achieve an overall impression on the recall accuracy of 
the identification of body parts, we generated a leave-
kInstance-out (k=5) cross validation with the Bayes Net 
classifier for each user, since a cross-user compatibility is 
not given. The training and test sets have been separated out 
of the 10 collected instances. The results for all users are 
summed up together in Table 1 below. 

a b c d e f g h < classified as 
82% - 10% - - - 1% 7% a = calf 

- 93% - 2% - 3% - - b = finger 
9% - 69% 1% 12% 3% 5% 1% c = upper arm 

- 3% 2% 82% - 5% 8% - d = palm 
1% 8% 9% 3% 73% 4% - - e = hand back 
1% - 5% 7% 3% 80% - - f = forearm 

10% 1% 8% 14% - 6% 54% 7% g = thigh 
6% 13% - - - 4% 12% 59% h = belly 

Table 1. The Confusion Matrix shows all identified instances 
in percentage (rounded) per body part. 

While the upper arm, belly and the thigh have been 
confused more often; the finger, palm, calf and the forearm 
seem to be reliably recognizable. Discarding problematic 
locations, such as the belly and thigh, would even further 
improve the overall recognition rates. 

T3: Resolution within Body Parts 
To ascertain the resolution of each body part, we assume 
the ideal case that only 2 spots are being trained. Because 
we had 5 distances of 15, 30, 50, 70, and 90 mm from our 
reference point, we had to generate 395 confusion matrices 
(400-5 on the thigh since one participant did not agree to be 
measured on her thigh) in which we were comparing a 
Bayes Net with a percentage split (33%) algorithm to find 
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out about possible confusions. A leave-one-out algorithm 
would require 3950 matrices that are beyond practicality. 
The accuracy of each matrix has been summed up below. 

15 30 50 70 90 < distance 
78.5% 86.3% 86.5% 95.4% 95.9% calf 
92.3% 94% 99.2% 100% 100% finger 
91.4% 96.5% 95.4% 99.2% 95.7% upper arm 
95.4% 95.4% 100% 94.9% 95.7% palm 
96.2% 96.2% 93.8% 97.7% 100% hand back 
87.7% 94.6% 94.6% 93.8% 96.6% forearm 
77.9% 83.8% 96.6% 94.9% 91.5% thigh 
85.6% 86.5% 86.2% 76.1% 77.8% belly 

Table 2. Resolution of body parts: The percentage values are 
the probability for our system to distinguish two points for the 

given distance and body part. 

When only comparing 2 trained spots at a single body part, 
the distinguishability is quite clear. In a more realistic 
context with multiple locations on multiple body parts, the 
recognition accuracy may not be as high as shown in Table 
2, which is a best-case scenario. However, given the 
relatively heterogeneous structure of our hand, it is still 
possible to distinguish spots by a distance of only 15 mm 
on the palm. Although resting potentials, capacitances and 
the surfaces vary in most parts of our body; they are less 
differentiable for more homogeneous body parts, such as 
belly, calf and thigh. Our tests indicate that the 
distinguishability within a body part is affected by the 
degree of homogeneity of the underlying body structure. 

T4: Recall Accuracy Over Time 
While performing tests over time, we found out that the 
electrical signature tends to vary slightly. A complete study 
on this phenomenon would require more precise apparatus, 
such as clinical EMGs, and would be very complex in terms 
of logistics. Nonetheless, to gain an impression on how the 
system theoretically performs over time, we recorded data 
of all body parts for one test subject over two days at 
random time points. For a first analysis (Figure 8 – red 
line), we took the initial recorded signature as a reference 
pattern and compared all later recordings with a 10-fold 
cross validation (Bayes Net classifier) against it. 

 
Figure 8. The curve extending over two days (note: x-Axis is 
not linear). We conducted a 10-fold cross validation with the 

Bayes Net classifier over the data set. Overall accuracy: initial 
data (red - 68.8%) and corrected (blue - 81.8%) 

The accuracy (Figure 8 – red line) decreases quickly after a 
few hours to an average of 68.8%. We suspect that mainly 
sweating but also microvibrations [31], environmental 
temperature, and the way the sensor is being placed on the 
skin have an impact on the measured electrical signature. 
While we could see some unknown variation to occur, we 
could also determine an offset change of the signal energy. 

To ensure an accurate recognition of all body parts over 
time, the profiling of a person needs to take multiple 
references points (e.g. from the morning / lunch / and 
evening). Furthermore we can make use of an additional 
reference sensor, which provides us the current skin 
resistance, to calculate a dynamic signal offset correction. 
By applying this last correction, we were able to achieve a 
recall accuracy of 81.8% (Figure 8 – blue line) for our data, 
which is a more acceptable accuracy. Another improvement 
that could be done would be to measure the temperature of 
the electrode, which has an impact on its current 
conductivity. 

WEARABLE INTERACTION WITH BOTENTIAL 
The ability to detect input gestures on various body parts 
allows Botential to support a variety of quick interactions in 
mobile context, which demand little user attention. Such 
interactions are defined as “microinteractions” by Ashbrook 
[2]. Interacting with Botential can be performed eyes-freely 
or hands-freely due to proprioception. Making use of such 
technology, users can achieve hands-free interaction either 
with their forearm or leg if their hands are occupied with 
activities, such as carrying groceries or riding a bike. 
Interaction with Botential can be performed by either 
touching the wearable device with various body parts (such 
as placing the finger, palm, or wrist on a necklace) or 
moving the wearable device to contact the various body 
parts (such as moving a ring on the finger to touch the arm, 
chest, or the leg). Below, we detail how Botential can be 
integrated into five common wearable objects to enhance 
such mobile interactions (see Figure 1). 

a) Torso (Necklace): Botential can be worn as a necklace 
(Figure 1-a). In this configuration, the wearer can interact 
by touching the device with the fingers or sliding the 
palm on its surface. Considering a scenario where the 
wearer is in a meeting or having dinner, a tap on the 
necklace with the hand could reject a call, while a sliding 
with the forearm could send the caller a predefined “I’m 
busy” message. 

 b) Wrist (Wristband or Watch): Integrating a Botential unit 
in a wristband (Figure 1-b) enables two different 
interaction styles: directly interacting on the wristband 
with the other arm or tapping, sliding, and hovering 
above other body parts (e.g., the belly). This method still 
supports hands-free interaction, which is desirable when 
holding things in the hands. The user can assign different 
functions to different body parts. For example, while 
jogging, the user could invoke the play/pause music 
command by tapping, or change the volume by sliding on 
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the belly. Since the arm is the most agile part, putting the 
device on it ensures access to many distinct body parts. 

c) Finger (Ring): Integrating Botential into a ring (Figure 1-
c) allows a wide variety of subtle gestures. Since the hand 
is a highly agile part of the body, it is possible for a user 
to tap on almost any body part, except the back, which is 
hard to reach. Since touching body parts with our hands 
can be performed eyes-freely, this kind of interaction 
would be very useful in scenarios where visual attention 
is already committed to real world tasks, but hands are 
not occupied. 

d) Waist (Belt Buckle or side of the belt): Attaching the 
device to a belt (Figure 1-d) enables similar interactions 
as those on the torso. Mounting the device on the hip also 
makes it possible to interact with the whole forearm 
without the need to wear a device on the arm itself. This 
can be useful in everyday situations when carrying heavy 
grocery bags, and a binary input, through a tap with the 
forearm on a belt, is sufficient. 

e) Leg/Foot (Legband or Shoe/Sock): Attaching the device 
as a legband at the thigh enables a user to slide or tap 
with the hand or wrist on the upper leg. Attaching it to 
the lower leg or to the shoe/sock enables natural leg 
gestures (Figure 1-e), where the user can slide, hover, or 
tap using one leg on the other. Leg gestures can be 
executed in a subtle way and are also useful when both 
hands are occupied, for example, when holding on to the 
handgrips in a bus or a train, or when typing on a 
keyboard. In these situations, it is easy to use tap gestures 
for discrete commands and to slide one leg on the other. 

Technological Advantages and Limitations 
Botential significantly enhances the ability to sense soft, 
hard and long touches. The pressure applied to the sensor 
on the skin does not affect the signal, unless it is really 
squeezed or almost not touching the skin. The system is 
also robust against commonly environmental influences, 
such as vibrations while driving or varying lighting 
conditions. While technology is evolving, such sensor type 
unit can be easily embedded into a wearable device. When 
integrated into a wearable object, the system can be used to 
interact on a large body area, as long as the sensor can 
reach it. For example, wearing Botential on the forearm, 
wrist, or hand allows interaction with most body parts, 
except where limited by the user's range of motion (e.g. the 
ability to reach a certain area on the back). Additionally the 
detection of the hovering state enriches the type of 
interaction one can perform with the body. Although the 
current implementation only provides information about 
distance and no indication of the body part being hovered, 
hovering can be used as an additional design channel to 
create a buffer state between no action and committed 
action. 
Like any other technology, Botential has its own 
constraints. First, to correctly identify the body part being 
tapped, the electrodes need to be in direct contact with the 

skin. Secondly, the measurement on the skin is influenced 
by intrinsic factors [26], such as blood flow or sweat, which 
typically affects electrical resistance. However, this can be 
mitigated with additional sensors that monitor the skin 
resistance and make appropriate adjustments to the system. 
External influences, such as electrical surface charging of 
the skin, such as when being in an electrostatic environment 
(e.g. server room or fluffy carpet) can affect the signal. 
Also excessively heavy touches and abrupt movements can 
make the signal hard to interpret. While variation of the 
signal over time may seem impractical, we want to 
emphasize the fact that we still found great similarities in 
the signal after two days without any recalibrating and a 
future intelligent system would have the ability to learn and 
recalibrate itself while being used. Moreover, the accuracy 
of detection dramatically increases as the number of 
assigned body locations decreases. 

Discussion 
Embodied Interaction [10], such as on-body interaction [18] 
is an interesting approach to meld human and computer 
together. Leveraging the human skin has several 
advantages, such as a stretchable, large and heterogeneous 
surface of about two square meters [5,29]. Nevertheless, it 
is arguable whether interaction on the body is suitable and 
socially acceptable. Especially when interacting in public 
with conspicuous gestures, social awkwardness might be 
pronounced [30]. However, this may change as making a 
call by talking to thin air with a Bluetooth headset also 
became socially acceptable over the past years. Still, 
touching different locations on the body has mental 
associations, which differs by culture backgrounds and 
disables specific body parts to be used as interaction 
interfaces, such as the collarbone [25] or breast. 

Multi-user input on the skin of another person is also an 
interesting scenario to investigate, which conveys rich 
emotional connections and meanings [20]. It is to assume, 
that personal interaction, which is usually accomplished 
with personal devices (e.g. a smartphones), could be 
enriched with interaction of one’s own skin, rather than 
using somebody else’s skin. Nevertheless, having additional 
input space available on one’s body, might change the 
perception and probably decrease the aversion of being 
touched by acquaintances. When offering multi user input, 
we also have to think on how to design rules to regulate 
interaction for certain user groups such as strangers.  

Thirdly, it is still unclear how Botential should be used on 
the full-body scale, whereby most of the body parts are 
often occluded with clothes. As already stated, we 
envisioned Botential to be integrated into several everyday 
wearables. However, we think integrating in a wristband is 
most beneficial to extend current devices. This would 
enable the user to interact on each body part reachable with 
their hand, but especially the forearm and hand, which are 
the most preferred locations for on-body interaction as 
found out in a rigorous study by Weigel et al. [38]. 
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BOTENTIAL FIELD STUDY 
Designing novel interfaces is facing several challenges; an 
important one is creating interaction concepts that are 
neither uncomfortable nor socially awkward to the user. 
Social awkwardness can quickly occur while performing 
circuitous gestures or touching specific body parts in certain 
context. Previous research has revealed that tapping on the 
belt [30] or the wrist [25] tends to be more acceptable than 
a touch close to the face.  

To verify Botential’s ability to complement current input 
modalities for mobile scenarios, we ran a study to compare 
two different approaches: using Botential to perform on-
body gestures vs. the default interaction method of Google 
Glass, by touching its frame. We recruited 40 participants 
(14 females, aged 18-52, M=27.2). Participants had to wear 
a Google-Glass-like device running a photo application. To 
interact with it, 20 participants used the interactive frame 
and the other 20 used the Botential worn on the wrist.  

We let the participants familiarize with the application and 
explained to them how to take pictures (by tapping on their 
body or on the frame), switch to picture display mode (with 
a long tap), and how to browse through pictures (by sliding 
on the frame or tapping/double tapping with Botential) with 
the assigned input device. Participants then had to fill out a 
custom questionnaire, in which we asked them to rate on a 
Likert Scale from 1 to 5 whether it would make them feel 
awkward to interact with either the frame or Botential. 

Because both input interfaces follow a slightly different 
interaction strategy, it is interesting to find out whether the 
two groups also perceive the task differently. Therefore we 
additionally measured the NASA Task Load Index of each 
participant. The NASA TLX results did not yield any 
significant difference between the two input devices for any 
of the 6 criterions (p>.05), thus both groups experienced the 
performed task quite similar in terms of Mental, Physical 
and Temporal Demand, Performance, Effort and Level of 
Frustration, which indicates the comparison to be valid. 

 
Figure 9. Results of the Custom Questionnaire. Error bars are 

.95 confidence intervals 

As seen on Figure 9, our results suggest that users felt 
interacting with Botential (MBotential=3.8/5) was significantly 
more acceptable (confirmed by a Mann Whitney test; 
U=285, n1=n2=20, p=.01) than interacting with the frame 
(Mframe=2.95/5). The study confirms that lifting the arm 
towards the head and exerting pressure on a glass frame is 
being perceived as more unpleasant than a subtle and 

natural gesture such as tapping the wrist, belly or touching 
the side of the leg. Furthermore, participants also suggested 
these discreet gestures to be suitable to be performed during 
conversations and other social occasions. 

Outlook 
Wearable devices such as Google Glass are becoming 
increasingly available to the general public. The major 
difference between HMDs and current mobile devices is the 
always-available visual output that allows users to perform 
quick tasks while on the go. The interaction paradigm on 
such products usually relies on either speech input, which 
might not work in noisy areas, or on simple gestures on the 
device’s frame. In scenarios such as important business 
meetings, voice input or interacting on the glass frame can 
be less desirable. Alternatively for these cases, a subtle 
touch on the side of the leg can be much less obvious and 
more socially acceptable. We envision Botential also to be 
integrated into smartwatch wristbands, such as from Apple 
Watch, which would complement these devices with a 
broader input space and alternative input paradigms.  

RELATED WORK 
Researchers have developed various ways to enable 
interaction with our own body and to make it suitable for 
mobile interaction. To better understand the unique 
properties of each technique, we summarize some recent 
work in this area in Table 3. 

 

Technology Interaction 
Style 

Eyes-
Free 

Hands
- Used 

OmniTouch [17] Projector+D.C
 

Contact N 1 
Imaginary I. [14] RGB Camera In air N 2 

Cohn et al. [7] Electric Field 
 

In air Y 0 

Botential EMG + 
Capacitive S. 

Hovering + 
Contact Y 0 

Skinput [19] Projector+Piezo Contact Y 1 
Humantenna [8] Electromagnet. 

 

In air Y 1 
WristFlex [9] FSRs In air Y 1 
Touché [33] Capacitive S. Contact Y 1 

Saponas et al.[32] EMG In air Y 1 
ShoeSense [4] Depth Camera In air Y 1 

Table 3. Overview of Related Work. Hands-Used is the 
minimal number of hands needed to interact. A hand is 
considered not being used if the user can interact while 

holding an object. Interaction Style: interaction is based on 
tapping or hovering above a body part or on gestures in air. 

Optical Tracking is a widely used technology but can be 
easily undermined by light conditions. Imaginary Interfaces 
[14] uses a small IR camera to detect hand and finger 
gestures, but it fails under certain light conditions. Depth 
cameras (Kinect) can be mounted on the human body to 
detect hand and finger gestures as presented in ShoeSense 
[4] or OmniTouch [17]. However, these setups cannot track 
the whole body. Using proximity sensors, such as 
demonstrated in SenSkin [24], is affected by the same 
issues as it is facing the problem of occlusion. 
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Capacitive Sensing is a reliable way to detect touches on 
surfaces. Touché [33] presents a method known as Swept 
Frequency Capacitive Sensing, which measures the 
impedance with respect to the frequency while driving a 
high frequency AC signal through the body. Such technique 
could in theory be expanded to the whole human body. 
However, A wearable interaction concept and how to 
reliably identify taps on different body parts is not being 
demonstrated. Interactive clothing has been proposed and 
used to detect interaction as in Pinstripe [22]. This 
technology consumes little power and allows for fabrication 
in high density and flexible material. However, expanding 
this to all clothes requires a big sensor network. 

Resistive Sensing is one of the oldest but still relevant 
methods for sensing input. Recently, WristFlex [9] 
presented how to incorporate FSRs in a wristband to 
classify hand and finger gestures. Also it can be utilized to 
detect mechanical deformations and touch events on the 
skin with printed tattoos [39] or an additional artificial skin 
[37]. Still, expanding this technology to the whole body 
might not be realistic, as it can be obtrusive and entails a 
possibly high acceptance threshold for users. 

Bio Acoustic Sensing with Piezo Films is presented by 
Skinput [19], which allows detection of hitting the forearm 
or hand based on the produced sound transmitted through 
bone conduction. Soft or long taps are not feasible to be 
detected. While the signal attenuates with distance, scaling 
this to the entire body would require many sensors. 

Accelerometers and Gyroscopes have been used by many 
researchers such as Aylward and Paradiso [1] and Rekimoto 
[27, 28]. This sensing allows for tracking of in-air gestures. 
The drawback is that an algorithm is required to constantly 
run to distinguish between wanted movement and 
unconscious movement when performing everyday tasks. 

Still a very uncommon way to detect body gestures is to 
utilize Environmental Electromagnetic Radiation as 
demonstrated in Human Antenna [8] or to use Static 
Electric Field Sensing as presented by Cohn et al. [7]. 

Measuring a Magnetic Field would be another method, 
which has recently been explored for finger gestures. Nenya 
[3] detects the movement of a ring mounted with a magnet 
around its wearer’s finger. The drawback with this 
technology is that it is limited physically to a specific 
radius. How to enable a more complex input with this 
technology in a 3D space is demonstrated in uTrack [6]. 

Electromyography (EMG) is a technology that can detect 
muscle tension through an increase in action potential. 
Saponas et al. [32] demonstrated its use for detecting finger 
gestures. In that particular case, many EMG electrodes must 
be fixed tightly on a certain area, such as around the arm. 
To measure very clean signals, the electrodes should be 
invasive. Depending on the number and nature of 
electrodes, heavy classification algorithms may be required. 

CONCLUSION 
In Botential, we proposed a novel proof-of-concept to 
enable hands-free and eyes-free mobile input that uses the 
human body as an extended input space. By sensing 
electrical signatures on the skin we utilize the existing 
signal the human body already emits, which is different 
from previous approaches and nicely complements those. 
While not just detecting the presence of a touch, but also 
recognizing a number of locations on the body, designers 
can assign different meanings to localized areas, which 
significantly increases the number of commands one can 
associate with on-body interaction. In addition to using an 
EMG sensor, our prototype also incorporates capacitive 
sensing to improve recognition and to enable the detection 
of hovering events, although detecting the exact location of 
the hovering event is not currently supported. While our 
study revealed electrical signatures to be user dependent 
and to slightly vary over time, broader studies with clinical 
EMG devices and a larger population are required to 
decrypt the human property of electrical potential and 
capacitance measurable on the skin. 
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